首頁 > 新聞資訊 > 使用功率開關(guān)提率高壓數(shù)字絕緣電阻測(cè)試儀

使用功率開關(guān)提率高壓數(shù)字絕緣電阻測(cè)試儀

2010-07-09 [1286]

 通常,高頻率運(yùn)作的開關(guān)電源(SMPS)允許使用小型無源組件,而硬開關(guān)模式則會(huì)引起開關(guān)損耗增大,為了降低高開關(guān)頻率下的開關(guān)損耗,業(yè)界開發(fā)了諸多軟開關(guān)技術(shù),其中負(fù)載諧振技術(shù)和零電壓轉(zhuǎn)換技術(shù)都獲得廣泛使用。

  負(fù)載諧振技術(shù)利用電容和電感在整個(gè)開關(guān)期間的諧振特性,使得開關(guān)頻率隨著輸入電壓和負(fù)載電流而變化。開關(guān)頻率的改變,如脈沖頻率調(diào)制 (PFM) 給含有輸入濾波器的SMPS 設(shè)計(jì)人員帶來了困難。因?yàn)檫@里沒有用于濾波的輸出電感,所以輸出整流二極管兩端的鉗制電壓允許設(shè)計(jì)人員選擇低額定電壓二極管。然而,當(dāng)負(fù)載電流增加時(shí),輸出電感的缺位給輸出電容帶來了負(fù)擔(dān),因而負(fù)載諧振技術(shù)不適用于具有高輸出電流和低輸出電壓的應(yīng)用。另一方面,零電壓轉(zhuǎn)換技術(shù)利用的是電路寄生成分僅在開關(guān)開啟和關(guān)斷轉(zhuǎn)換瞬間才出現(xiàn)的諧振特性。這些技術(shù)的優(yōu)勢(shì)之一是利用了寄生組件如主變壓器的漏電感和開關(guān)的輸出電容,因而無需增添更多的外部組件來實(shí)現(xiàn)軟開關(guān)。此外,這些技術(shù)使用具有固定開關(guān)頻率的脈寬調(diào)制(PWM)技術(shù),因而,這些技術(shù)相比負(fù)載諧振技術(shù)更易于理解、分析和設(shè)計(jì)。

  由于非對(duì)稱PWM半橋轉(zhuǎn)換器具有簡(jiǎn)單配置和零電壓開關(guān)(ZVS)特性,因此是使用零電壓轉(zhuǎn)換技術(shù)的zui常見拓?fù)渲。不僅如此,相比負(fù)載諧振拓?fù)淙鏛LC轉(zhuǎn)換器,非對(duì)稱PWM半橋轉(zhuǎn)換器具有一個(gè)輸出電感,其輸出電流的紋波成分小得可以由一個(gè)適當(dāng)?shù)妮敵鲭娙輥硖幚。由于易于分析和設(shè)計(jì),且具有一個(gè)輸出電感,所以非對(duì)稱PWM半橋轉(zhuǎn)換器通常用于具有高輸出電流和低輸出電壓的應(yīng)用如PC電源和服務(wù)器電源。為了更好地處理輸出電流,往往在次級(jí)端使用一個(gè)同步整流器,因?yàn)閭鲗?dǎo)損耗可作為替代二極管損耗的電阻損耗。相比LLC轉(zhuǎn)換器,實(shí)現(xiàn)用于非對(duì)稱半橋轉(zhuǎn)換器的同步整流器驅(qū)動(dòng)器更為便利,此外,電流倍增器是增加主變壓器在高輸出電流下的利用率的常用方案。

  本文描述帶有電流倍增器和同步整流器的非對(duì)稱PWM半橋轉(zhuǎn)換器的普遍特性,并列舉一個(gè)示例及某些實(shí)驗(yàn)結(jié)果,該示例使用針對(duì)非對(duì)稱受控拓?fù)涞墓β书_關(guān)。

  帶有電流倍增器和同步整流器的非對(duì)稱PWM半橋轉(zhuǎn)換器的優(yōu)勢(shì)

  對(duì)于具有低輸出電壓和高輸出電流的應(yīng)用,廣泛使用電流倍增器。圖1所示為處于次級(jí)端帶有電流倍增器的非對(duì)稱PWM半橋轉(zhuǎn)換器,次級(jí)線圈是單端配置而輸出電感分為兩個(gè)較小的電感。為了提高總體效率,使用具有低RDS(ON)的MOSFET構(gòu)成的同步整流器 (Synchronous Rectifier, SR)。與傳統(tǒng)的中心抽頭式(center-tapped)配置相比,電流倍增器具有多項(xiàng)優(yōu)勢(shì):首先,勵(lì)磁電流的DC成分小于或等于中心抽頭式配置的 DC 成分,因而變壓器可以使用較小的磁芯。當(dāng)每個(gè)輸出電感承擔(dān)負(fù)載電流的一半時(shí),勵(lì)磁電流與中心抽頭式配置相似。如果輸出電感承擔(dān)的負(fù)載電流不均衡,勵(lì)磁電流就會(huì)減少。其次,次級(jí)線圈電流的平方根值(root-mean-square, RMS)小于中心抽頭式配置,這是因?yàn)閹缀跻话氲?font color="#000000">負(fù)載電流流經(jīng)各個(gè)輸出電感。鑒于此,次級(jí)線圈的電流密度低,可以使用相同的磁芯和相同的線材規(guī)格。第三,其繞組本身較中心抽頭式方案簡(jiǎn)單,尤其值得關(guān)注的是由于變壓器線引腳數(shù)量的限制,可用于多輸出應(yīng)用。第四,可以更便利、有效地從輸出電感獲取SR的柵極信號(hào),由于初級(jí)線圈匝數(shù)足夠多而變壓器次級(jí)線圈匝數(shù)只有少許,可從輸出電感輕易獲取適當(dāng)?shù)臇艠O電壓,如10V和20V之間的電壓。此外,單獨(dú)的輸出電感將會(huì)減輕更大磁芯的成本負(fù)擔(dān)。鑒于上述數(shù)項(xiàng)優(yōu)勢(shì),電流倍增器是高輸出電流應(yīng)用的zui常用拓?fù)渲弧?/font>

圖1.使用電流倍增器的非對(duì)稱PWM半橋轉(zhuǎn)換器

  建議的轉(zhuǎn)換器運(yùn)作原理

  如圖2所示,從供電模式2開始,由于S1開啟,Vin-VCb施加到變壓器的初級(jí)端,勵(lì)磁電流im以斜率(Vin-VCb)/Lm.增加,由于SR2關(guān)斷,LO1的電流斜率就由(Vin-VCb)/n減去輸出電壓決定。另一方面,LO2的電流以斜率–VO/LO2減小,這是流經(jīng)SR1的續(xù)流(free-wheeling)。當(dāng)兩個(gè)輸出電感分享負(fù)載電流時(shí),SR1承擔(dān)全部負(fù)載電流。變壓器的次級(jí)繞組僅處理iLO1,因而iLO1/n是反射到變壓器初級(jí)端的電流,它在勵(lì)磁電流上疊加,構(gòu)成初級(jí)電流ipri。在實(shí)際上,由于漏電感的現(xiàn)象,所以vT2較圖2所示的數(shù)值稍低,但我們?cè)谶@一章段中將忽略這一情況,從而簡(jiǎn)化分析。

圖2.建議轉(zhuǎn)換器的運(yùn)作分析

  當(dāng)S1關(guān)斷,則開始模式3,由于S2的輸出電容被放電,故vT1也減小,zui終,當(dāng)S2輸出電容電壓等于VCb. 時(shí),它變?yōu)榱。同時(shí),由于SR2的反向偏置電壓消除,因此它的體二極管開啟導(dǎo)通。然后,兩個(gè)SR在這個(gè)模式中一起導(dǎo)通。S2的體二極管在S2的輸出電容和S1的輸出電容*放電后導(dǎo)通,由于兩個(gè)SR均導(dǎo)通,iLO1和iLO2均為續(xù)流,斜率分別為–VO/LO1和–VO/LO2, 而vT1和vT2均為零。由于VCb僅僅施加在漏電感上,它引起初級(jí)電流的極性快速變化。在S2的體二極管導(dǎo)通后S2開啟, 從而實(shí)現(xiàn)S2的ZVS運(yùn)作,這個(gè)模式的持續(xù)時(shí)間為

  模式4是另一個(gè)充電模式,在各個(gè)SR之間的換向結(jié)束時(shí)開始,在變壓器初級(jí)端施加的電壓為–VCb,因而勵(lì)磁電流以斜率–VCb/Lm減少,iLO2的斜率為(VCb/n-VO)/LO2。其它的電感電流是通過SR2的續(xù)流?蓮膱D2看出,由于異相(out-of-phase)作用,每個(gè)輸出電感的大紋波電流得以消除。因而,相比中心抽頭式或橋式整流配置,它可以在電流倍增器配置中使用兩個(gè)較小的電感。

  當(dāng)S2關(guān)斷,模式1作為另一個(gè)重建模式而開始,模式1的運(yùn)作原理幾乎與模式3相同,只有ZVS狀況例外。在模式1中,當(dāng)S1的輸出電容電壓等于Vin-VCb的瞬間,vT1成為零。在這個(gè)瞬間之前,輸出電感LO2上的負(fù)載電流反射到變壓器的初級(jí)端,有助于實(shí)現(xiàn)開關(guān)的ZVS運(yùn)作。與此相反,存儲(chǔ)在漏電感中的能量?jī)H在這個(gè)瞬間之后對(duì)輸出電容進(jìn)行放電和充電。因而,S1的ZVS運(yùn)作較S2更為穩(wěn)固,因?yàn)橥ǔin-VCb高于VCb,除此之外,可以與模式3相同的方式進(jìn)行分析,模式1的延續(xù)時(shí)間為

友情鏈接 : / 制造論壇 /  燒結(jié)磚 /  二次元影像儀 /  電壓跌落模擬器 /  蓖麻油酸 /  軟啟動(dòng)器 /  洛氏硬度計(jì) /  薄膜開關(guān) /  土壤水分測(cè)定儀 /  濕式電除塵器 /  襯四氟攪拌 /  電池巡檢儀 /  消化爐 /  紫外線殺菌器 /